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Fractional calculus as a macroscopic manifestation of randomness
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We generalize the method of Van HoMehysica(Amsterdam 21, 517 (1955] so as to deal with the case

of nonordinary statistical mechanics, that being phenomena with no time-scale separation. We show that in the
case of ordinary statistical mechanics, even if the adoption of the Van Hove method imposes randomness upon
Hamiltonian dynamics, the resulting statistical process is described using normal calculus techniques. On the
other hand, in the case where there is no time-scale separation, this generalized version of Van Hove’s method
not only imposes randomness upon the microscopic dynamics, but it also transmits randomness to the macro-
scopic level. As a result, the correct description of macroscopic dynamics has to be expressed in terms of the
fractional calculus[S1063-651X99)11802-§

PACS numbds): 05.40—a, 05.45-a, 05.60-k

[. INTRODUCTION ducing stochastic dynamics, namely, discrete processes and
unpredictable nondifferentiable jumps, in the dominion of
The physical paradigm of statistical physics is Browniancontinuous and differentiable Hamiltonian dynamics.
motion, which involves diffusion, dissipation, and the Actually the differentiable nature of the macroscopic pic-
fluctuation-dissipation relation tying the two together. Theture is, in a sense, a natural consequence of the microscopic
dynamical model of this process was provided by Langevirandomnes$5,6], and of the related nondifferentiability as
in 1908 using a stochastic differential equation. In spite ofwell, due to the key role of the central limit theorem. Recall
this long history, it seems apparent from the nature of ranthat in the central limit theorem the quantities being added
domness that such macroscopic stochastic equations are itogether are statistically independent, or at most weakly de-
compatible with the continuous and differentiable charactependent, in order for the theorem to be applicable and Gauss-
of microscopic Hamiltonian dynamics. However, it is widely ian statistics to emerge. Once a condition of time-scale sepa-
believed that Brownian motion can be rigorously derivedration is established, in the long-time limit the memory of the
from the totally deterministic Hamiltonian models of classi- nondifferentiable character of microscopic dynamics is lost,
cal mechanics. Part of the reason for this conviction has tand Gaussian statistics result. This also means that use can
do with the wide use made in literature of Van Hove's be made again of ordinary differential calculations on the
method[1-3]. In one form or another, many of the attempts macroscopic scale, even if the microscopic dynamics are in-
currently made to establish a unified view of mechanics ang@ompatible with the adoption of ordinary calculus methods.
thermodynamic§4] can be traced back to the method of Van  On the other hand, in the case where a time-scale separa-
Hove. The result of this method depends on whether weion between macroscopic and microscopic levels of descrip-
adopt the Heisenberg perspective, corresponding to the tim#on does not exist, the nondifferentiable nature of the micro-
evolution of observables, or the ScHinger perspective, scopic dynamics is transmitted to the macroscopic level. An
corresponding to the time evolution of the Liouville density. illuminating example is given by the paper of REf], which
In the former case, the usual outcome is the derivation fronshows that a diffusion process generated by a fluctuation
mechanics of an ordinary Langevin equation. In the lattewith no time scale at the macroscopic level generates a dif-
case, the adoption of the Van Hove method yields mastefusion process well described by a fractional Lapla¢&g).
equations. We focus here especially on the conventional difThe paper of Ref[7] also addresses the intriguing problem
fusion equation, with the diffusion process described by af making a Lery process, which has an infinite second mo-
second-order spatial derivative. ment, compatible with the dynamical approach to diffusion.
In the Heisenberg perspective, after averaging over affhe dynamical approach to diffusion rests on steps of finite
ensemble of realizations of the stochastic force, the relaxtength, and consequently results in finite second moments.
ation process is described by an exponential function. In th&his problem has been addressed in a variety of ways
Schralinger perspective, the mathematical representation df10,11], ranging from taking into account the finite sizeof
the diffusion process is given, as we have said, by a secondhe sample, within which the vy flight takes placg10], to
order spatial derivative of a density function. Therefore, thethe case where the probability density is truncdtet. We
mathematical description rests on either ordinary analyticatather follow the prescriptions of Rdf7], which is a form of
functions(exponential functionsdescribing the dynamics, or Lévy walk, where the individual jumps are not instantaneous
on conventional differential operatotsecond-order deriva- and involve a time cost, thereby making it possible for us to
tives) describing the phase space evolution. This is probablydopt a diffusion picture with finite moments. All this was
the reason why there is no mention of the fact, and indeed ndiscussed in Ref[7], and here the results of Rdf7] are
perception, that the Van Hove method is equivalent to intromade compatible with the infinite moments of theviesta-
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tistics by means of the generalized Van Hove method. An- df(t) , (1
other case where the adoption of a fractional calculus is T fOK(t—t’)f(t')dt', 1)
made necessary concerns the generalization of the exponen-

tial form of relaxation according to the recent prescriptionsyheref is some quantity of interesk is a memory kernel,
of Nonnenmacher and co-workef42,13, involving the and A\ is a parameter. Equatiofil) is a typical non-
concept of a fractional time derivative. The main aim of this Markovian equation obtained in studying physical systems
paper is to prove that the fractional derivative, both the spaceoupled to an environment, and whose environmental de-
fractional derivative of Ref[7] and the time fractional de- grees of freedom have been averaged over. In this case the
rivatives of Refs[12,13 are made compatible with Hamil- parametei can be regarded as the strength of the perturba-
tonian deterministic dynamics by means of a generalizedion induced by the environment on the system of interest.
version of Van Hove’s method. In the literature, wide use is made of the Markov approxi-
In fact, if we make the traditional classical assumptionmation[14], which replaces the integrodifferential equation
that the microscopic dynamics follow the Newton prescrip-(1) with the rate equation
tion, we also have to address the problem of how to make
this prescription compatible with randomness. The solution m: —(szmK(t’)dt’)f(t). )
to this problem requires that an extension of the Van Hove dt 0
method be discovered. This naturally yields the working hy- o . ) o
pothesis that the fractional derivatives, currently used to deThe Van Hove limit[2] consists of making the limit
scribe macroscopic transport procesg®42,13, can be re- —0, t— in such a way that the produsft is kept con-
garded as the macroscopic manifestation, in the absence 8fant. That is, setting=\?t and F(x)=f(t), Eq. (1) be-
time-scale separation, of either nondifferentiable micro-COMes
scopic dynamics, an assumption that would violate the appli-
cability of Hamiltonian dynamics to this domain, or of a dF(x) :_fxm?
Hamiltonian description that loses differentiability through a dx
kind of filtering described by a generalized Van Hove ap-
proximation. In other words, just as the Van Hove methodNow the adoption of the limit
makes Brownian motion compatible with Hamiltonian dy- . 5
namics, a generalized Van Hove method is used here to const=x=l|m0 AT @
make the macroscopic fractional calculus compatible with tee
microscopic Hamiltonian dynamics. The main difference , . )
from the case of ordinary statistical mechanics is that in thign@kes it possible for us to replace the time convoluted form
nonordinary case the nondifferentiable nature of microscopid? Ed- (1) with
dynamics, either natural or forced by the adoption of the Van df(t)
Hove prescription, is transmitted to the macroscopic level ——=—\27f (1), (5)
where it takes the shape of fractional derivatives. The main dt
purpose of this paper is to substantiate this working assump-
tion with convincing arguments. where
The outline of the paper is as follows. In Sec. Il we ex- w
press the Van Hove method in a form equivalent to the or- 7'=J’ dtK(t). (6)
dinary method, but more convenient for the generalization 0
that we plan to develop in this paper. In Sec. Il we show thal . . . .
in the Heisenberg picture the generalization of the Van HOVéEquz_atlon(S) gives an exponential solution, the same as that
method results in the fractional derivatives currently used b)?btam?d by means of the Markov approxmat@)l.
Nonnenmacher and co-workers to study polymer dynamics. Taklng the limitA—0 correqunds to assuming th&.lt the
Section IV and Appendix A are devoted to the Satinger c;ogphng of the system to the enV|ronment is vyeak, while the
picture, and show that the Van Hove method in this picturdiMit t— means that the observation time is much larger
leads to the fractional derivative introduced by Seshadri an§@n other temporal scales present in the system. Specifically
West[8] (see also West and Grigolif®]) to describe Ley this time must be larger than the microscopic timeThis

processes. Section V is devoted to concluding remarks. remark allows us to reformulate the Van Hove limit in a
slightly different way, more suitable for our purposes. First,

instead of taking thé—o limit, we shall take the limitr
—0. Also, we shall replace the limit—0 with the equiva-
lent limit V—oo, whereV is a coupling constant, to be speci-
fied in the following. The quantity to be kept constant in
As pointed out in Sec. I, the Van Hove limii] of a  carrying out the limit is just the produdt?r. Notice that
microscopic process turns out to be a key ingredient for theonnectingV, 7, and\ ask =V makes it possible to keep
derivation of statistical mechanics from microscopic dynam-V<7! (in such a way thak<1), and at the same time to
ics. We review this limit and how it works in the case of a setV?— so as to ensurg?r— const.
specific model rather than in general. The meaning of Eq9.3)—(5) can be illustrated by adopt-
Let us start by recalling the meaning of this limit. Con- ing this equivalent perspective, and can be shown to be a
sider the integrodifferential equation way of disregarding the time evolution of the system at both

K(t")F(x—N\2%t")dt’. ®)
0

II. VAN HOVE LIMIT: AN EXAMPLE
FROM A SPECIFIC MODEL
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very short and very long times, where the deviations fromand
the exponential relaxation show (ip5]. In the Hamiltonian

case the relaxation cannot be rigorously exponeriiél,
thereby preventing a satisfactory connection between micro-
scopic dynamics and stochastic phyditg]. We now show  The asymptotic approximatiofi2) shows that the momen-
this benefic effect of the Van Hove method with the help oftum autocorrelation function consists of the sum of an expo-
an illustrative example, where the origin of Brownian motion nentially decaying term and a nonexponential oscillatory
stems from the average over an initial statistical distributiorcontribution that decays as an inverse power law in time.

wg=4k/im. (14)

[6] rather than from chaolb]. Consider a chain of IR+1

Notice thatw, is a Debye-like cutoff frequency that is re-

linear harmonic oscillators all with equal spring constantsjated to the microscopic time scateas r=2/w,. The gen-

and described by the Hamiltonian

N 2 K

N
= > _I+_i=§;N (Gi+1— 0%, (7)

i==N 2Mm;

wherem;=m if i #0 andmy= M. Vitali and Grigolini [18]
proved that the correlation function for the momentpgnof
the system of interest,

(PoPo(1))
Do(t) =5, ()
(Po)
satisfies the integral equation

t
q>0:_A%fo‘bl(t_t')‘bo(t’)dt’, 9

where

A2=2k/M, (10)

eral form of this solution had also been observed and dis-
cussed by Zwanzi2].

Now the Van Hove limit expressed in terms of the param-
eters of the model becomes

y=lim A2r= lim wyu. (15)
7—0 u—0
Aiﬂw wg—*

Notice that this limit can be realized assuming—0 and
M—0 asm¥2 The closer to zero the massis, the better
the physical conditiot >m is fulfilled (the better the mac-
roscopic description of the system of inteje§tonsequently,
the oscillatory tails in Eq(12) cancel, and an exact exponen-
tial relaxation is recovered:

Dy(t) =exp(— yt). (16
The rationale for this result stays in the formal similarity of
Egs.(9) and(1). Letting, as mentioned before=A; 7, it is
a simple matter to verify that—0 asm“ and the ordinary

and®,(t) represents the correlation function of the stochasan Hove limit(4) can be applied. More in general, we can
tic force in the corresponding generalized Langevin equatio@Ssume that relatioil5) holds true independently of the
(see Sec. Ill. The parameten; plays the same role as that model, and we can regard the paramejerand g as free

of the earlier mentioned coupling constavit while 7 is
given in this specific model by the expression

© m
= fo @, (t)dt= \/;

In the long-time region, the solution to E(P) is given by
[18]

11

Mmoot

1-p
Dy(t)=——exp - ——
o(t) 1-24 F{ =

. 2u (= sin(Xth)\/xz—ld
EN— _— X
m Jo (1—-2u)X>+ u?

,LLwot

1-n
exp — ——
1-2p Vi-2u

LM \/( 2 )( ¢ ”)
SN -1,
(1-w)? ¥\ m(og®) V0 4

12

where

u=m/M (13

parameters of the theory. If we adopt this view, the exponen-
tial decay is recovered by making the Van Hove limit as
described by the right-hand side of H@5).

In the following, we shall refer to the Van Hove limit,
rather than using the known version of E4), as expressed
in our nonconventional form

y= lim A2r=Lim AZ?r. (17)
7—0 VH
Ai*}@

A final remark concerns the fact that the same refdtud
(16)] could have been obtained by applying the Markov ap-
proximation to Eq.(9). In that case, the basic assumption
would have been an infinite time-scale separation between
the microscopic time scale and the macroscopic scale de-
fined as the inverse of the frequen®f=2k/M; that is,

N
—‘/ﬁ-

Notice that the time-scale separation between the system of
interest and bath is rendered infinitely large exactly by the
same limits as those used in order to carry out the Van Hove
limit: m—0 andM—0 asm¥2 This demonstrates that the
Van Hove limit and the Markov approximation are essen-
tially equivalent to one another.

(18
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Ill. HEISENBERG PICTURE: ORDINARY Hamiltonian dynamics. An important example of relaxation
AND FRACTIONAL RELAXATION incompatible with Hamiltonian dynamics is in fact the expo-
nential relaxation: a case exhaustively discussed by Lee in
It is well known[19] that the generalized Langevin equa- his brilliant 1983 papef16]. This paper proves therefore the
tion importance of fulfilling the constraints of EQR3) for a gen-
eralized Langevin equation to be compatible with Hamil-

C a2 o N 7 tonian dynamics. This condition is here fulfilled by adopting
v Alfoq)l(t o)dr+1(1) 19 the choice of Eq(24).
corresponds to the following hierarchy of correlation func- A. Ordinary statistical mechanics
tions: Ordinary statistical mechanics can be recovered from the
, t generalized Langevin equatioid9), using Eq.(24) along
o= —Aﬁlf D (t—t")D,(t")dt’. (200  with the integrability condition on the power-law index,
0

. . . p>1. (25
Equation(9) is thei=0 case of Eq(20).

In order to derive both normal and anomalous relaxatiorThe microscopic time scaleis given in this case in terms of
properties, we are interested in making a nontrivial choice othe parameteT,
the correlation functionb,(t). However, we also want our
choice to be compatible with a completely dynamical ap- I E
proach. Therefore, we need to identify the conditions neces- ood TA N 2
sary to assure that both these constraints are satisfied. First, T f o t (T2 12)p2 2 - ( B)

T. (26)
by means of Laplace transforms and the convolution form of 5
Eq. (20), it is easy to prove thab, can be represented in the

form of a continued fraction: Therefore, the Van Hov&/H) limit in form (17) is achieved
in the limit T—0,

~ 1
b= @ =
2t —— m
A =30 2 lim AT, 2

where®,(z) denotes the Laplace transform & (t). This g |imiting procedure results in exponential relaxation for
structure is valid fob,(0)=1, and this is a first requirement o orrelation functiomb,(t), and allows us to safely inter-

to fulfill. Then we recall that the expansion parametafs pret Eq.(19) as identical to the ordinary Langevin equation
can be expressed in terms of the moments

(F1l(=L)"| 1) v=—yv+f(1). 28)

n
Sn= (f1]f,) :(D(l (0), (22) This is the traditional result obtained using the Van Hove
method.
whereL is the Liouvillian operator driving the time evolution
of the Liouville density, andlf,) is the first state in the Mori B. Nonordinary statistical mechanics

chain[19,20. An elegant way of expressing the parameters
Aiz in terms of the moments, has been established by fu
Grigolini et al. [21]. This implies that®,(t) must be infi-
nitely differentiable. Finally, the symmetry properties of the 0<B<1, (29
Liouvillian imply that the condition

In the case where the power-law index of the correlation
nction is in the interval

the nonintegrability of the correlation functidq@4) prevents
Son-1=0 (23 us from adopting the above approach. In the casg36:1,
we are forced to look for a different procedure to go from a
also has to be fuffilled. microscopic to a macroscpic description of the system. This
Therefore, we decide to focus our attention on the ChOiC%rocedure can be derived in a natural way from the Origina|
Van Hove limit. Let us consider the limit

TA
O, ()= ———. 24 — i 2TB—|im A2TA
1(t) (T2 1) (24 Q TllinoAlT EUL‘ AZTA, (30
Af_m

Note that the moments, are nothing but th@th order time

derivatives ofd,(t). Thus it is straightforward to prove via We shall refer to this limit as to the generalized Van Hove
successive time differentiation of ER4) that the odd mo- limit (GVH).

ments vanish. This is an important mathematical property Adopting the ansat£30), and inserting Eq(24) into Eq.
necessary to make the relaxation process compatible witf19), we obtain
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b= —Lim A2TA Now, we want to compare this last expression with the frac-
o o ¢ tional relaxation equation obtained by ®le and Nonnen-
macher[12]. The fractional relaxation equation for a func-
t 1 tion @ (t;v) is given by
f ————dy(t")dt’ M
o [T2+(t—t")%]"? 1d

Oy (t;v)—Dy, (0;v)=—
W () = Py (03) =~ =

Dy (tv) (35

t 1
= —Qf —,B(DO(t,)dt,- (31
o (t—t') where the symbod™"/dt™” denotes the fractional integral

For dimensional reasons, it is convenient to write (see Appendix A

Q=V27~. (32) A =L [ faar
dt " F(V) O(t_t/)l—v'

(36)
Notice that in general the correlation function is related to
the waiting time distributionj(t) of the process under study The solution of Eq(35) is known[13] and is given by the

o so-called Mittag-LefflefML) function,
o=t f e %9 bt -0 N g
’ ML MLAS o '(vk+1)\ 7)

and therefore Eq(31) can be rewritten which exhibits stretched exponential behavior at short times

and inverse power-law relaxation at long times.

Y()=Q t Do(t")dt’ . (34) Setting B=1—w, it becomes possible to compare the
o (t—t")~ fractional relaxation equation with E¢34) to obtain
|
Y(t)=—Qr(1-B) 7 APy (t;1- B)— Py (0;1-B)], (39)

where the superscript-18 corresponds to the value ferto insert into the form of the solutiofsee Sec. Il B. Also recalling
Eq. (32), we finally obtain, for the waiting time distribution function,

Y(H)=— (VDT (1-B)[ Py (t;1—B)~ Py (0;1-B)], (39

which maintains the interesting properties of the Mittag-probability density is obtained from the Langevin equation
Leffler function earlier pointed out. by adopting the Zwanzig projection operator method in the
It is important to stress that the resulting analytical func-form discussed by Grigolini23], and it is exact under the
tion has been used by Glkle and Nonnenmachg22] to fit  following two conditions:(i) the dynamics of is indepen-
with a very remarkable accuracy the relaxation curves oflent of that ofx, and(ii) the system producing th&fluctua-
stress experiments on glassy material. This suggests that thiens is a two-state system.
dynamical randomness without time-scale separation takes Notice that(ii) does not necessarily mean that the variable
the shape of a time fractional derivative, and becomes ex¢ is dichotomous. The case of anomalous diffusion generated

perimentally detectable at the macroscopic level. by intermittent map$24] is an illuminating example, where
the change from a continuous two-state fluctuating variable
IV. SCHRODINGER PICTURE: GAUSSIAN AND LE VY to the dichotomous case does not produce significant effects
DIFFUSION on diffusion. From the point of view of our generalized Van

) _ i Hove limit, however, the difference in the two conditions is
~Let us now consider the equation of motion for the one-ggsential. As we shall see in Sec. IV A, the replacemet of
dimensional probability densitp(x,t): with a dichotomous variable with the valu®éand —W is
an essential ingredient of the generalized Van Hove method.
For reasons which will shortly become clear, it is conve-
nient to write the probability distribution at time-t’ in
terms of the probability distribution at tinteas

d ) t d°
ap(x,t)=<§ >eqfo<l>g(t’)@p(x,t—t’)dt’- (40

This equation refers to the process

©

p(x,t—t’):f F(x—x',—t")p(x’',t)dx’, (42

— o0

X=¢, (42)

and @ (t) is the autocorrelation function of thé fluctua-  where the functiorf is a propagator. Equatioi0), with the
tions. The integrodifferential equation of motion for the nontrivial choice(24), becomes
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J ) @ t uesW and —W with the basic condition that the actual val-
ED(XI)ZQ >eqf dx’ fodt, ues of the true variable are included in the interval
o [—W,W] (see Fig. 1
T8 52 This leads us to assume, for the form of the propagator
X——————F(x—X',—t")p(x’,t).
(T2+t'2)A2 gx? F(x=x',—t")=8(Wt' —|x—x']), (50)
(43 which is clearly time dependent. Equati@t8) then becomes
We shall discuss both the case of ordinary diffusi@ex 1, P WETLTB (o
and the case of anomalous diffusions< B<<1. Ep(x,t): i f dx’ p(x’,t)
A. Ordinary statistical mech.anlcs | Xﬁ[W2T2+|X—X/|2]_ﬁ(ﬁ+2)|x—xl|2
Let us assume that the power-law index in the autocorre- [W2T2+ |x—x’|2]5’2+2

lation function is
(51
B>1, (44
It is evident that Eq(51) differs from Eq.(43) by a correc-
and let us make the choice of a time-independent propagatdion term that disappears in the generalized Van Hove limit.
The generalized Van Hove limit is defined in this case as

F(x—x',—t")=48(x—x"). (45
Q= lim TAWY*A, (52)
Equation(43) then becomes Wl
9 , too TP 92 and, noticing that this implieg/>T?>—0 asW~?#, Eq. (51)
PO =(Eeq fodt RONTLL EP(XI)- can be rewritten
46 ’
(49 : BBHD) (= . PO 1)
. . . . —px,t)=——0Q dx'————. (53
The microscopic time-scale of the autocorrelation function at 2 —%  |x—x'|P*+2

@ (), present in Eq(46), is finite for 3>1, and we can
apply again the conventional Van Hove limit in the form  This form of diffusion equation coincides with the West-
Seshadri equatiof7,8] for a centrosymmetric lxgy process.

D= Iim (&%)e,T- (47 The fact that Eq(53) allows for a solution in the form of a
=0 Lévy process becomes apparent by taking its Fourier trans-
(Eeq form. Letting
Substituting this expression into E@6), we obtain the stan- p=pB+1=1<u<? (54)

dard diffusion equation
and using Ref[25], for the Fourier transform of an inverse

d 9 power law we obtain
P =D—=p(x1). (48)
X
ik \FF e s( W) (55)
k= =I'(- cog — ——|.
Note that the case where the correlation functipt) is |x|1# T (=w) 2

exponential, although in conflict with the Hamiltonian con-

straints[16], assists us in further interpreting the meaning of Therefore, making use of the convolution theorem for Fou-
the Van Hove limit. As shown in Appendix B, the use of an rier transforms, Eq(53) becomes
exponential correlation function reduces E4Q) to the tele-

graphic equation, whose exact solution, expressed in the d

proper limit, agrees with the result predicted by the proce- E‘ﬁ(k’t): —blk[*a(k,t).
dure here described.

(56)

P(&)
B. Nonordinary statistical mechanics

Let us consider now the case where the power-law index
is in the interval ;

0<pB<1. (49)

In this case, we define the generalized version of the Van v A W voe

Hove procedure as the recipe leading to the largest compo- FIG. 1. Sketch of how the distributioR() of the £ variable is
nent of the diffusion process. Therefore, as a first step, wenodified so as to make the varialidully equivalent to a dichoto-
make the variabl€ dichotomous, by assigning to it the val- mous variable.



PRE 59 FRACTIONAL CALCULUS AS A MACROSCORPIC ... 2609

Here ¢(k,t) is the Fourier transform of(x,t), that is, the tion of an ensemble of trajectories rather than that of a single
characteristic function, and the paramedtes given by trajectory, ordinary diffusion is produced by a dynamical op-
erator proportional to a second-order spatial derivative.

_ BBt ™ Again, a condition of ordinary differentiability is ensured. In
b= 27 QI'(—u)|co 2 >0. (57) conclusion, the existence of a time-scale separation between

microscopic dynamics and the experimental observation,

The solution to Eq«(56), with the initial condition¢(k,t ~ usually made at the macroscopic level, ensures that the re-
=0)=1, necessary for the inverse Fourier transform to besults of the observation process can be predicted by means of

defined as a probability density, is written as theoretical prescriptions based on ordinary mathematical
procedures resting on the differentiability assumption.
#(k,t)=e Pkt (58) A totally different condition is generated if the time-scale

separation is not adequate. We have separately discussed the
which indeed corresponds to the definition of the characterHeisenberg and Schdinger pictures. From the results of

istic function for a Ley process. Sec. I, devoted to the Heisenberg picture, we see that when
Equation(53) can also be cast in the form of a fractional the condition of time-scale separation is insured, the ordinary
differential equatiori9] Van Hove method can be applied, and standard exponential

relaxation follows. In the absence of the condition of time-
scale separation, the method of Van Hove must be general-
ized, and this, in turn, yields a generalization of the exponen-
tial relaxation, a condition that according to Gkte and
whereD (®) is a proper definition of fractional derivatiyteee =~ Nonnenmachef12,13 turns out to be very efficient for de-
Appendix A. We see, in conclusion, that with the adoption scribing such nonstandard physical processes as polymer dy-
of the generalized Van Hove method the standard diffusiofamics. )
equation yielded by the ordinary Van Hove method is ex- From within the Schrdinger picture, discussed in Sec.
pressed in terms of a fractional derivative. More in generallV, the lack of a time-scale separation, and the consequent
we expect that the ordinary Fokker-Planck equation can b&equirement for a generalization of the Van Hove method,
replaced by a generalized expression resting on fractionalields the striking replacement of the ordinary Laplacian op-
derivatives[9]. erator with the fractional Laplacian discussed in Appendix
In Sec. V we shall give more support to our conviction A. We have to point out that even in this case randomness
that the generalized form of the Van Hove method, heréhas a very subtle origin, implying a departure from the dif-
adopted to derive the spatial version of fractional derivativederentiable condition of Hamiltonian dynamics, and the re-
of Eq. (59), is intimately related to the vy-Gnedenko theo- placement of the continuous variable responsible for micro-
rem[26]. We limit ourselves to point out that the adoption of scopic fluctuations with a dichotomous variable. This
fractional calculus to deal with processes of anomalous difprocess, changing a two-state physical dynamics, compatible
fusion is becoming more and more popular, and for the inwith a Hamiltonian picture, into a nondifferentiable process
terested reader we quote Refg7,28, whose results, how- is clearly described by the sketch of Fig. 1. We firmly restate
ever, must be compared to the conclusion of R2@] as  here that the replacement of a continuous variable picture

PO =(—1)4D Wp(x,1), (59

well as to those of this section with some cautj@0]. with a discrete representation is also done in the case of
ordinary statistical mechanics, where this way of forcing ran-
V. CONCLUDING REMARKS domness within differentiable dynamics does not imply a

departure from differentiable dynamics at a statistical level.

The adoption of the Van Hove limit is essentially a so- When the condition of time-scale separation is not available,
phisticated way of making the Markov approximation. Thethe Van Hove procedure of forcing microscopic dynamics to
Markov approximation, in turn, establishes the physical conbecome random has a striking manifestation at the macro-
dition necessary to make Hamiltonian dynamics compatiblescopic level under the form of the fractional Laplacian of
with stochastic physics. However, when this method is apAppendix A.
plied to microscopic dynamics to derive ordinary statistical To stress the main conclusion of the paper, we set aside
mechanics, there is no clear perception of establishing dythe non-Hamiltonian cases, and especially those where sto-
namic properties inconsistent with Hamiltonian dynamics.chastic processes are assumed to be already at work, what-
This is so because, even if the correlation functions are madever their origin might be. This is where the microscopic
exponential by forcing the Markov approximation into mi- dynamics are genuinely not differentiable, and whether or
croscopic dynamics, so as to become incompatible with bothot this lack of microscopic differentiability has macroscopic
classical 16] and quantuni15] mechanics, they are still dif- manifestations depends on whether or not this nondifferen-
ferentiable functions. tiability can be transmitted to the macroscopic level as a

From the point of view of a single trajectory, the realiza- result of memory. The present paper also sheds light on this
tion of the Brownian condition implies, from a rigorous interesting, but less fundamental, issue. A much more impor-
mathematical point of view, the breakdown of the conditiontant condition is that where the dynamics are described by a
of differentiability. However, even in this case the perceptionHamiltonian. In this case the microscopic dynamics are dif-
of a conflict with Hamiltonian dynamics is blurred by the ferentiable, and in principle, there would be no microscopic
adoption of a statistical perspective. Within the Sclimger-  randomness to transmit to the macroscopic level.
like picture, namely, the picture where we observe the mo- However, one of the main tenets of the current literature
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on the derivation of statistical mechanics from dynamicsThe Levy-Gnedenko theorem insures that fdrtending to
rests on the conviction that randomness can be generatéafinity a Levy diffusion process is generated. From a physi-
from Hamiltonian dynamics either as a consequence of theal point of view this has the same effect as forcing zero.
action of infinitely many degrees of freedom or as a conse- We think that at this stage we are also in the right position
quence of chaos. The Hamiltonian of Eg) is an example to establish an appealing connection with exciting results of
of the first kind, and the sense of the Van Hove limit in thatthe research work of Ref§5,6]. Although some doubts are
case is that the very short and the very large time scales afkPressed by the authors of RE8)] on the role of chaos in
beyond the range of observation. Thus, randomness is a cof€nerating Brownian motiofa role which might be suffi-

sequence of the observer's limitations. The physical condiCi€Nt but not necessary, as, in a sense, it is also shown by our

tion illustrated by Fig. 1, conversely, might be related in chain model of Sec. )] we are inclined to believe that the

some way to the case of chaos, in a sense that it is convenieffnnection established by the authors of R&f between
to properly discuss here. Brownian motion and chaos is very attractive. However, it

Let us consider the well-known case of a map resulting irPPli€s to the condition of time-scale separation, which is
intermittency [31], for instance, that introduced by Geisel expgcted to generate ordinary statlstlcallmechamcg. This pa-
and Thomad32]. The motion under study is characterized PE" IS devoted, on the contrary, to studying dynamical cases
by a long permanence in conditions of regular motion withWhere this time-scale separation is missing, and conse-
bursts of chaotic dynamics concerning the transition fronfuently, nonordinary statistical mechanics is generated. This
one laminar region to the other. This is not a genuinelyMight generate the wrong impression that the method of

Hamiltonian dynamics, and the generator of intermittency in@lysis adopted in Refi5], based on the use of the
in fact a map. According to the general discussion of Ref/<elmogorov-Sinai entropy35], cannot be applied to the dy-
[31], similar properties can also be exhibited by genuinely”am'cal systems with no time-scale separation. Actgally, it
Hamiltonian systems such as the attractive model of the egd1@S Peen recently sho86] that the Kolmogorov-Sinai en-
carton two-dimensional potential investigated by Geisel! ropy can be generalized so as also to be made efficient in the

Zacherl, and Rador{83]. Another interesting model of the €2S€ of fractal dynamics. Furthgrmore, it was also recently
same type is the three-dimensional Hamiltonian flow mores"OWN[37] that the same entropic arguments naturally lead

recently studied by Zaslavsky, Steven, and Weitzig]. to the same form of spatial fractional derivative as that of Eq.
This paper, as well as that of RE&3], can be regarded as an (59). Thi_s means that_ the Van Hove gener_alized method (_Jlis-
example of Hamiltonian derivation of the i processes, cussed in this paper is expected to establish a natural bridge

and, consequently, according to the point of view adopted iff€tWeen the nonextensive entropy of Tsallé8] and the

this paper, an example of a dynamical process described J@ctional derivative of Eq(59), much in the same way as
the macroscopic level by a fractional derivative in spite of itst€ ordinary Van Hove method makes Hamiltonian dynamics

Hamiltonian, and, consequently, differentiable nature. compatible with the standard diffusion equation of Eg),

It has to be stressed, however, that the theory behind thi nd so with ordinary extensive thermodynamics behind it
macroscopic derivation should be applied to a numerical 39].
treatment of these processes: This theory does not have any-
thing to do with the ideally exact solution of a dynamical ACKNOWLEDGMENT
model resting on a continuous treatment, and the assumption .
of differentiability at any order. The numerical treatment is One of th? author$A.R.) thanks the INFM for partial
characterized by round-off errors and, more importantly, by gupport of this research.
discrete time representation, which forces the system to de-
part from the conditions ideally established by its Hamil- APPENDIX A
tonian property. The intermittency of these systems is sulffi-
cient to create at least temporary conditions of
nondifferentiability which are then transmitted to the macro- ; oo s ; .
scopic level and changed, in the way described in this paper[%(;alljlstgesg;r;agg'I;ggwfl:)e"gvifi'r:"“ggfo[zféfﬁz?lasl g;zg;al.
into fractional derivatives. The generalized version of the . - ’ g Ret4dl,
Van Hove method serves the basic purpose of introducinéhe'g fractional integral of the functior(x) to be
conditions of microscopic nondifferentiability without leav- B
ing the theoretical treatment and without entering the level of d”? F(30 = 1 (x f(y)dy
the numerigal solution. In the case of the dynamical ap- dx= 5 L(B)Jec(x—y) 8
proach to Ley processes, the meaning 0]‘ the generalized
Van Hove method is closely related to theweGnedenko  yye also define theg fractional derivative of the function
generalized central limit theorefi26]. This is so because (x) as
forcing the fluctuating variable to become rigorously di-

We want to define the integrals and derivatives used in the
fractional calculus introduced in the text. First of all, let us

(A1)

chotomous imposes enough coarse graining on the system so 8 1 d" (x f(y)d
as to produce randomness. We also note that in the case 1 —f(X)=—— — f L’ (A2)
<pB<2, T is proportional to the mean time duration the dx? I'(n=B) dx" Je (x—y)F "1

map spends in one laminar region. Consequenthg:-it, the

number N=t/T, which is very large, corresponds to the where n is the smallest integer larger tha®, that is, n
number of uncorrelated space transitions of intengity =[g]+1. The constant in the limits of the integrals is
—x'|, with probability 1/x—x’|**#, made by the system. usually set to O(Riemann definitiop or to —o (Liouville
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definition). It is easy to show that for g integer both defi- 1 w
nitions reduce to the ordinary definitions of derivative and DCRf(x)= — f cB(x—y)f(y)dy, (A14)
integral. Vo J -

An equivalent definition makes use of Fourier transform

[41]. Let us consider a functiof(x) with Fourier transform where

f(k): (—1)8 (= .
cP(x)= f k|?Pe~*dk. A15
- (x) 2n _w| | (A15)
f(k =—J' f(x)e**dx, A3
(k) 2n ) (X) (A3) i
1 o 0<B<1, (A16)
f(x =—J f(x)e " **dk. A4
*) N LR ) (A4) integral (A15) can be evaluated explicitly25]:
The nth derivative off(x) can be written as (—1)# 1
c(x)= 51 (ALD
DMf(x)=F " (—ik)"F(k);x], (A5) V2wl (—2p)cod ) |X|
and a possible way of generalizing this expression toghe and setting B=u(=0<ux<2), we obtain
derivative off(x) is
1 2b(=p+?
DA (x)=F [ (—ik)PE(K);x]. (AB) X -1t (A18)

Equation(A6) is equivalent to the convolution product Now using Egs.(54), (A14), and (A18), Eg. (53) can be
L e expressed in terms of the fractional derivati#&*). This
DBf(x)= — J dB(x—y)f(y)dy, (A7) gives Eq.(59). Notice that Eq.(59) is consistent with Eq.

2 )= (56), since

where FLeW(x);K]=(—k2)#2=i#|k|*. (A19)

dB)(x)= B (—ik)fe~xdK. (A8) APPENDIX B
N2/ == Our aim is now to show that the conventional Van Hove
It is possible to calculate an explicit representation of inte-imit produces, in the case of exponential relaxation for the

gral (A8), and the results arfet1] correlation function, the same result as the traditional ap-
proach. Let us consider the following equation of motion for
dm x f(v)d the probability densityp(x,t):
| Y (a9
(N=8) dx" J-—=(x—y) J 72

t
— — (2 Y A ’ '
n at p(xlt) <U >eq f0®v(t t )axz p(xlt )dt . (Bl)
1 d J'w f(y)dy
L(n=p) dx" Jx (x—y)B="+1’ Equation(B1) is the same as E¢40) and the bath variable,
(A10) now denoted withv, is not dichotomous. Assuming

DPf(x)=—

where againn=[gB]+1, and the+ (—) corresponds to o 1
evaluating integral(A8) in the upper(lower) complex k d,=e", y=- (B2
plane. It is apparent that EGA9) coincides with the Liou-
ville definition of the fractional derivative and differentiating both sides of E¢B1), we obtain
d# Pz 9 4
(05)) = _ - N 2y
D (x) dxﬁf(x)' (A11) P D=y p(X, ) +(v )eqaxzp(x,t), (B3)

A different way of generalizing Eq(A5) is the following.  whose Fourier transform is given by
Let us start from the definition of second derivative
2

& . d .
D@f(x)=F " (-k?F(k);x], (A12) Ep(k,t)%—yﬁp(k,t)+<v2>e(}<2p(k,t)=0. (B4)

and let us generalize it as
g Both Egs.(B3) and(B4) correspond to the telegraphic equa-

DOF(x)=F 1 (—k2)PE(K):x]. (A13) tion. Considering the condition

Equation(A13) is equivalent to the convolution product E)(k,0)=0, (B5)
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the exact solution ofB4) is written as

- k
p(k,t)=A] ex+*t— Z+—EI(;ea(k)t 86)

|

with A to be specified according to the normalization condi-
tion, anda.. given by

2 2
7.2\ J1- M0
272 Y

4(v? 2
CaE
Y

ar=— (B7)

Assuming now

(B8)

solution (B6) can be expanded in a Taylor series, giving

o k|t
Y Y= (V) e’y

Xex;{ —yt+ %t) +O( <v2>§q)

p(k,t)=A

’)’3

(B9)
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Note that setting conditio(B8) is compatible with the Van
Hove limit resting on settingg— . At this stage we have to
apply to Eq.(B9) the Van Hove limit, which in addition to
setting y— also rests on making the lim{ty?)e— in
such a way that

<Uz>eq

D=Lim
VH

(B10)

We note that this procedure makes the te@(gv?)2{y%)
disappear, so as to recover the ordinary diffusion equation
solution

p(k,t)=Ae DK, (B11)

On the other hand, the same result can be obtained by apply-
ing the Van Hove limit directly to the equation of motion
(B1) with the assumptioriB2), and also making use of both
Egs.(42) and (45). This proves that ordinary Brownian dif-
fusion rests on the Van Hove limit.
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